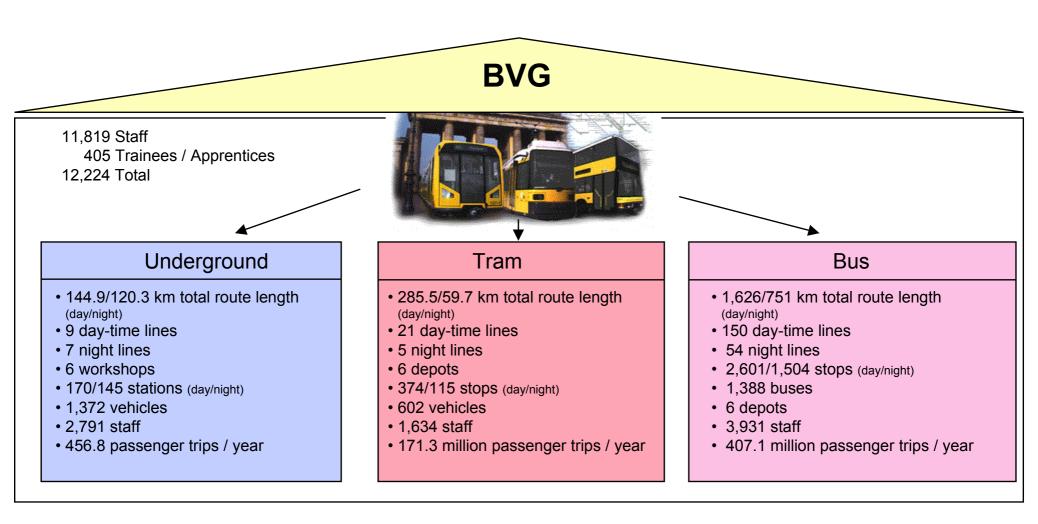
Experiences from using hydrogen in public transport

Clean Energy Forum Berlin, 13 October 2005


Henning Niemeyer MVV Consulting GmbH

On behalf of Berliner Verkehrsbetriebe (BVG)

Structural data of Berliner Verkehrsbetriebe (BVG)

Environmental measures so far tested in BVG's buses

Technology	Vehicle	Additional costs compared to diesel
Methanol (1985 - 1988)	7 MAN SL 200 7 Mercedes Benz O305	approx. 28%
CNG (1996 - 1999)	4 MAN NG 232 2 Mercedes Benz O405 GN 4 Mercedes Benz O405 N	approx. 20%
Aquazole * (1999)	15 buses	approx. 8% / 100km additional consumption
CRT (1999 - 2001)	800 buses retrofitted	approx. 5500 EUR/unit
Euro 5 / EEV (2003 – to date)	25 VOLVO buses	Funded by German Environ. Ministry

And last but not least: hydrogen ...

* Diesel water blend helping to reduce NOx emissions

Berlins first hydrogen filling station: The Hydrogen Competence Centre (I)

23 October 2003 Inauguration: Usedomer Strasse bus depot, non-public station Location: BVG, Total Deutschland GmbH, Linde Main partners: Funding: European Commission, 5th Framework Programme Total Deutschland GmbH Operator: Available fuels: CGH₂ at 250 bar, produced on-site through electrolysis 17,600 I LH₂ at 3-4 bar and -253° C, shipped in by Linde

Berlins first hydrogen filling station: The Hydrogen Competence Centre (II)

MVV·Consulting

BVG

Operation of a hydrogen powered 12m standard bus (I)

Make:	MAN Nutzfahrzeuge AG
Propulsion:	Hydrogen ICE, 140 kW (first generation)
Fuel:	CGH ₂ at 300 bar
Commissioning:	29 April 2004
End of test phase:	22 November 2004
Technical breakdowns:	none

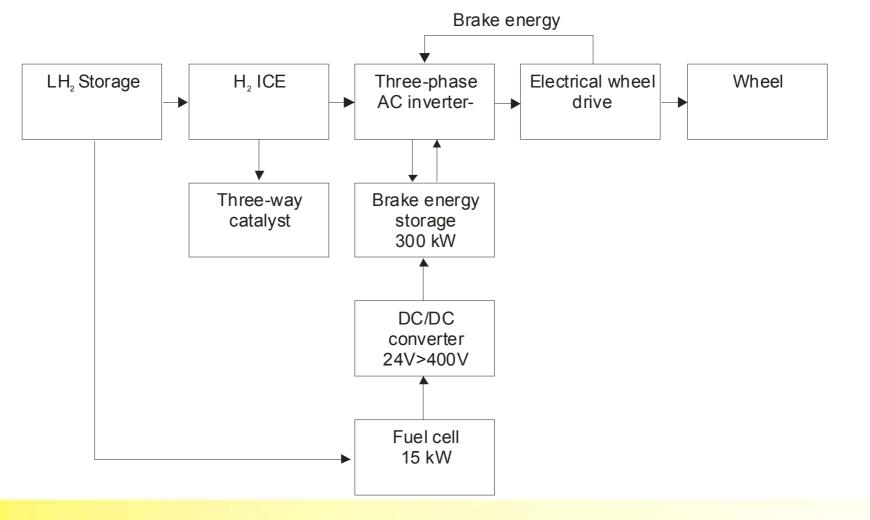
The bus was operated on different scheduled service routes and during special events.

Operation of a hydrogen powered 12m standard bus (II)

Mileage	3,929 km
Fuel consumption	16.5 kg/100 km
Energy costs (H ₂)	95.70 EUR/100km (5.80 EUR/kg)
Energy costs (Diesel)	44.00 EUR/100km (0.94 EUR/I)
Factor	Currently about 2.2 times higher energy costs for hydrogen

Operation of a hydrogen powered 12m standard bus (III)

Construction of an articulated bus with hydrogen ICE, fuel cell and energy storage for Berlin (I)


Funding:	German Federal Ministry of Economics and Labour
Project duration:	2001-2006
Basic vehicle:	Mercedes O405 GNTD
Propulsion:	Electrical wheel drive
Fuel:	LH ₂
Commissioning:	Spring 2006

The bus will be operated on different scheduled service routes and during special events.

MVV·Consulting

BVG

Construction of an articulated bus with hydrogen ICE, fuel cell and energy storage for Berlin (II)

Construction of an articulated bus with hydrogen ICE, fuel cell and energy storage for Berlin (III)

BVG

MVV·Consulting

BVG as partner in the "Clean Energy Partnership Berlin"

Funding:

Project duration:

BVG's activities:

German Federal Ministry for Transport, Construction and Housing

2003-2007

Implementation of a workshop for hydrogen buses at the Usedomer Strasse depot

Operation of available vehicles under the umbrella of this project (vehicles and operation not funded)

Promotion of hydrogen as a fuel in public transport

BVG as a partner in "HyFleet:Cute"

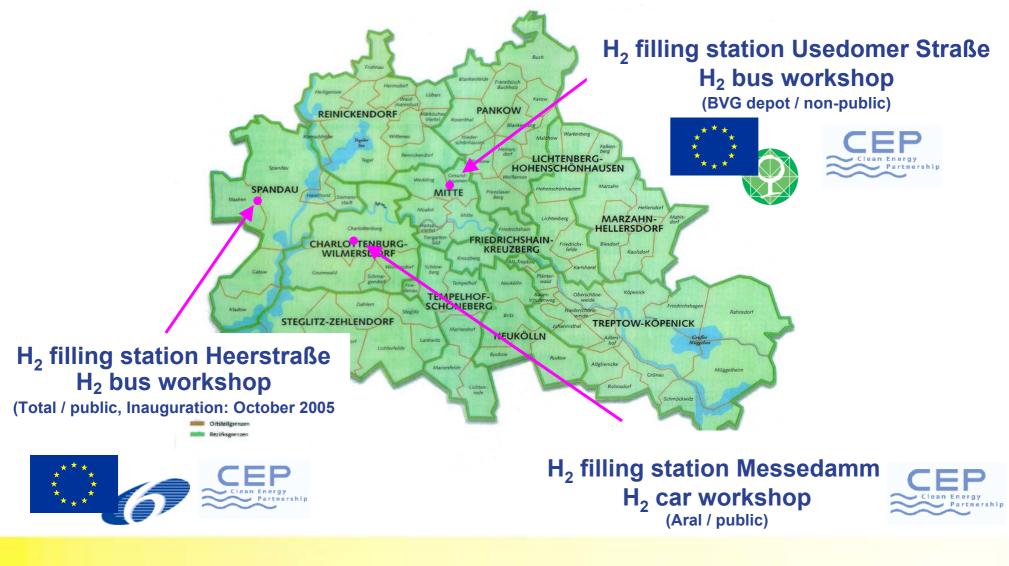
Funding:	EC, 6th Framework Programme
Expected project duration: 2005-2009	
Vehicles in Berlin:	4 MAN buses with naturally aspirated hydrogen ICE, 150 kW (second generation)
	9 MAN buses with turbocharged/direct injection hydrogen ICE, 200 kW (third generation)
	1 MAN bus with turbocharged/direct injection hydrogen ICE, 200 kW, with energy management/FC-APU
Commissioning:	First vehicles are expected to be in operation starting from the FIFA World Cup 2006

"HyFleet:Cute" / "CEP" – The bus refilling infrastructure

- Total Deutschland GmbH started implementation of the third Berlin hydrogen filling station at Heerstraße in Berlin-Spandau in August 2005
- Activities at this site are funded within the HyFleet:Cute project and to a smaller extent within the CEP project

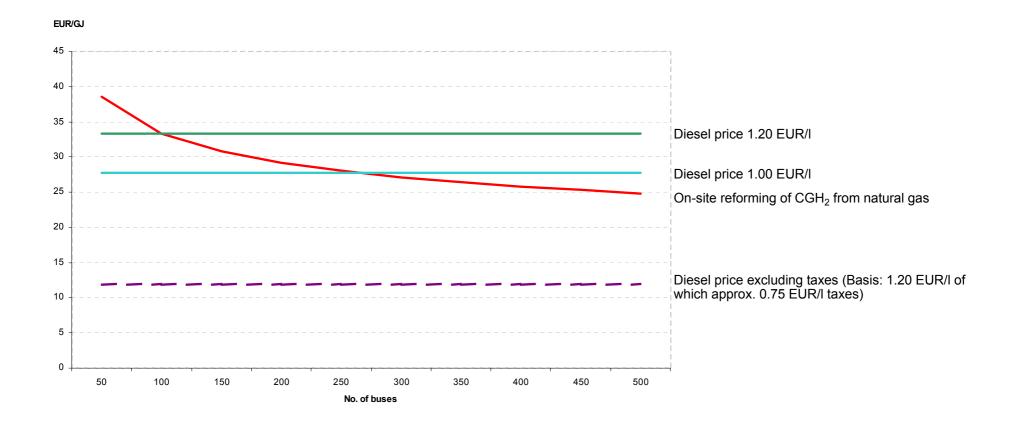
MVV Consulting

"HyFleet:Cute" / "CEP" – The bus refilling infrastructure


- A public part of the filling station can serve cars operated within CEP while a private part on the bordering BVG depot will serve BVG's hydrogen bus fleet
- A new bus workshop in this location will be part of BVG's activities

- Filling capacity of up to 20 buses / day
- CGH2 on-site production through reforming LPG or Bio-DME
- Reliquefaction of LH₂ boil-off
- New generations of dispensers and compressors using ionic fluids

MVV·Consulting


Hydrogen capital Berlin

MVV·Consulting

BVG

Development of hydrogen costs in dependency of consumption

MVV·Consulting

BVG

Source: TOTAL

Outlook

Step 1: H2 ICE (2004 ...)

- Very high reliability ...
- ... good economic efficiency (competitive vehicle prices, increasingly attractive fuel costs) ...
- ... high power density and sufficient operating range
- A perfect moment for leaving the demonstration laboratories by entering into fleet operation under real life conditions.

Step 2: H2 ICE / FC hybrid (2006 ...)

- Basic driving power will still come from hydrogen ICE with proven reliability and optimised engine efficiency - ...
- ... however, FC APUs in sophisticated hybrid concepts and brake energy recovery systems will further increase the overall system efficiency.

Step 3: H2 FC (2008 ...)

- While fuel cell vehicles have so far not proven to be reliable enough to be operated in a normal scheduled service they may initially be an option in special vehicles such as ...
- ... buses with optical guidance systems ("bus trams") being a compromise between the flexibility and cost efficiency of buses and the transportation capacity of trams

